A Noise Scaled Semi Parametric Gaussian Process Model for Real Time Water Network Leak Detection in the Presence of Heteroscedasticity
نویسندگان
چکیده
The timely detection of leaks in water distribution systems is critical to the sustainable provision of clean water to consumers. Increasingly, water companies are deploying remote sensors to measure water flow in real-time in order to detect such leaks. However, in practice, for typical District Metering Zones (DMZ), financial constraints limit the number of deployable real time flow sensors/meters to one or two, thus constraining leak detection to be based on the aggregated flow being monitored at these point. Such aggregated flow data typically exhibits input signal dependence whereby both noise and leaks are dependent on the flow being measured. This limited monitoring and input signal dependance make conventional approaches based on simple thresholds unreliable for real time leak detection. To address this, we propose a Gaussian process (GP) model with an additive diagonal noise covariance that is able to handle the input dependant noise observed in this setting. A parameterised mean step change function is used to detect leaks and to estimate their size. Using prior water distribution systems (WDS) knowledge we dynamically bound and discretize the detection parameters of the step change mean function, reducing and pruning the parameter search space considerably. We evaluate the proposed noise scaled GP (NSGP) against both the latest research work on GP based fault detection methods and the current state of the art and applied leak detection approaches in water distribution systems. We show that our proposed method out performs other approaches, on real water network data with synthetically generated time varying leaks, with a detection accuracy of 99%, almost zero false positive detections and the lowest root mean squared error in leak magnitude estimation (0.065 l/s).
منابع مشابه
Adaptive Signal Detection in Auto-Regressive Interference with Gaussian Spectrum
A detector for the case of a radar target with known Doppler and unknown complex amplitude in complex Gaussian noise with unknown parameters has been derived. The detector assumes that the noise is an Auto-Regressive (AR) process with Gaussian autocorrelation function which is a suitable model for ground clutter in most scenarios involving airborne radars. The detector estimates the unknown...
متن کاملA Comprehensive Performance Analysis of Direct Detection Receivers inWDMASystems
In this work the performance of a wavelength division multiple access (WDMA) system with direct detection receiver is investigated. For this purpose, the probability of error in a WDMA network with OOK modulation considering crosstalk, ISI, photo detector noise and thermal noise is calculated and the effect of each on system performance is investigated. The system performance in presence of PIN...
متن کاملطراحی و پیادهسازی سامانۀ بیدرنگ آشکارسازی و شناسایی پلاک خودرو در تصاویر ویدئویی
An automatic Number Plate Recognition (ANPR) is a popular topic in the field of image processing and is considered from different aspects, since early 90s. There are many challenges in this field, including; fast moving vehicles, different viewing angles and different distances from camera, complex and unpredictable backgrounds, poor quality images, existence of multiple plates in the scene, va...
متن کاملINVERSE FREQUENCY RESPONSE ANALYSIS FOR PIPELINES LEAK DETECTION USING THE PARTICLE SWARM OPTIMIZATION
Inverse Transient Analysis (ITA) is a powerful approach for leak detection of pipelines. When the pipe transient flow is analyzed in frequency domain the ITA is called Inverse Frequency Response Analysis (IFRA). To implement an IFRA for leak detection, a transient state is initiated in the pipe by fast closure of the downstream end valve. Then, the pressure time history at the valve location is...
متن کاملLEAK DETECTION IN WATER DISTRIBUTION SYSTEM USING NON-LINEAR KALMAN FILTER
Leakage detection in water distribution systems play an important role in storage and management of water resources. Therefore, to reduce water loss in these systems, a method should be introduced that reacts rapidly to such events and determines their occurrence time and location with the least possible error. In this study, in order to determine position and amount of leakage in distribution ...
متن کامل